Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Infect Dis ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37357964

RESUMO

BACKGROUND: Novel Oral Polio Vaccine Type 2 (nOPV2) has been made available for outbreak response under an Emergency Use Listing authorization based on supportive clinical trial data. Since 2021 over 350 million doses of nOPV2 were used for control of a large outbreak of circulating vaccine-derived poliovirus type 2 (cVDPV2) in Nigeria. METHODS: Using a Bayesian time-series susceptible-infectious-recovered (TSIR) model, we evaluate the field effectiveness of nOPV2 immunization campaigns in Nigeria compared to those using monovalent oral polio vaccine type 2 (mOPV2). RESULTS: We find that both nOPV2 and mOPV2 campaigns were highly effective in reducing transmission of cVDPV2, on average reducing the susceptible population by 42% (95% CI 0.28-0.54) and 38% (95% CI 0.20-0.51) per campaign, respectively, which were indistinguishable from each other in this analysis (relative effect 1.1, 95% CI 0.7-1.9). Impact was found to vary across areas and between immunization campaigns. CONCLUSIONS: These results are consistent with the comparable individual immunogenicity of nOPV2 and mOPV2 found in clinical trials, but also suggest that outbreak response campaigns may have small impacts in some areas requiring more campaigns than are suggested in current outbreak response procedures.

2.
Vaccine ; 41 Suppl 1: A105-A112, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-34483024

RESUMO

BACKGROUND: Circulating vaccine-derived poliovirus outbreaks are spreading more widely than anticipated, which has generated a crisis for the global polio eradication initiative. Effectively responding with vaccination activities requires a rapid risk assessment. This assessment is made difficult by the low case-to-infection ratio of type 2 poliovirus, variable transmissibility, changing population immunity, surveillance delays, and limited vaccine supply from the global stockpile. The geographical extent of responses have been highly variable between countries. METHODS: We develop a statistical spatio-temporal model of short-term, district-level poliovirus spread that incorporates known risk factors, including historical wild poliovirus transmission risk, routine immunization coverage, population immunity, and exposure to the outbreak virus. RESULTS: We find that proximity to recent cVDPV2 cases is the strongest risk factor for spread of an outbreak, and find significant associations between population immunity, historical risk, routine immunization, and environmental surveillance (p < 0.05). We examine the fit of the model to type 2 vaccine derived poliovirus spread since 2016 and find that our model predicts the location of cVDPV2 cases well (AUC = 0.96). We demonstrate use of the model to estimate appropriate scope of outbreak response activities to current outbreaks. CONCLUSION: As type 2 immunity continues to decline following the cessation of tOPV in 2016, outbreak responses to new cVDPV2 detections will need to be faster and larger in scope. We provide a framework that can be used to support decisions on the appropriate size of a vaccination response when new detections are identified. While the model does not account for all relevant local factors that must be considered in the overall vaccination response, it enables a quantitative basis for outbreak response size.


Assuntos
Poliomielite , Poliovirus , Humanos , Vacina Antipólio Oral/efeitos adversos , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Vacinação/efeitos adversos , Surtos de Doenças/prevenção & controle
3.
Vaccine ; 41 Suppl 1: A85-A92, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35339308

RESUMO

BACKGROUND: The global withdrawal of trivalent oral poliovirus vaccine (OPV) (tOPV, containing Sabin poliovirus strains serotypes 1, 2 and 3) from routine immunization, and the introduction of bivalent OPV (bOPV, containing Sabin poliovirus strains serotypes 1 and 3) and trivalent inactivated poliovirus vaccine (IPV) into routine immunization was expected to improve population serologic and mucosal immunity to types 1 and 3 poliovirus, while population mucosal immunity to type 2 poliovirus would decline. However, over the period since tOPV withdrawal, the implementation of preventive bOPV supplementary immunization activities (SIAs) has decreased, while outbreaks of type 2 circulating vaccine derived poliovirus (cVDPV2) have required targeted use of monovalent type 2 OPV (mOPV2). METHODS: We develop a dynamic model of OPV-induced immunity to estimate serotype-specific, district-level immunity for countries in priority regions and characterize changes in immunity since 2016. We account for the changes in routine immunization schedules and varying implementation of preventive and outbreak response SIAs, assuming homogenous coverages of 50% and 80% for SIAs. RESULTS: In areas with strong routine immunization, the switch from tOPV to bOPV has likely resulted in gains in population immunity to types 1 and 3 poliovirus. However, we estimate that improved immunogenicity of new schedules has not compensated for declines in preventive SIAs in areas with weak routine immunization. For type 2 poliovirus, without tOPV in routine immunization or SIAs, mucosal immunity has declined nearly everywhere, while use of mOPV2 has created highly heterogeneous population immunity for which it is important to take into account when responding to cVDPV2 outbreaks. CONCLUSIONS: The withdrawal of tOPV and declining allocations of resources for preventive bOPV SIAs have resulted in reduced immunity in vulnerable areas to types 1 and 3 poliovirus and generally reduced immunity to type 2 poliovirus in the regions studied, assuming homogeneous coverages of 50% and 80% for SIAs. The very low mucosal immunity to type 2 poliovirus generates substantially greater risk for further spread of cVDPV2 outbreaks. Emerging gaps in immunity to all serotypes will require judicious targeting of limited resources to the most vulnerable populations by the Global Polio Eradication Initiative (GPEI).


Assuntos
Poliomielite , Poliovirus , Humanos , Vacina Antipólio Oral , Poliomielite/epidemiologia , Sorogrupo , Vacinação , Vacina Antipólio de Vírus Inativado
4.
BMC Health Serv Res ; 22(1): 1175, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127683

RESUMO

BACKGROUND: Digital health interventions (DHI) have the potential to improve the management and utilization of health information to optimize health care worker performance and provision of care. Despite the proliferation of DHI projects in low-and middle-income countries, few have been evaluated in an effort to understand their impact on health systems and health-related outcomes. Although more evidence is needed on their impact and effectiveness, the use of DHIs among immunization programs has become more widespread and shows promise for improving vaccination uptake and adherence to immunization schedules. METHODS: Our aim was to assess the impact of an electronic immunization registry (EIR) using an interrupted time-series analysis to analyze the effect on proportion of on-time vaccinations following introduction of an EIR in Tanzania. We hypothesized that the introduction of the EIR would lead to statistically significant changes in vaccination timeliness at 3, 6, and > 6 months post-introduction. RESULTS: For our primary analysis, we observed a decrease in the proportion of on-time vaccinations following EIR introduction. In contrast, our sensitivity analysis estimated improvements in timeliness among those children with complete vaccination records. However, we must emphasize caution interpreting these findings as they are likely affected by implementation challenges. CONCLUSIONS: This study highlights the complexities of using digitized individual-level routine health information system data for evaluation and research purposes. EIRs have the potential to improve vaccination timeliness, but analyses using EIR data can be complicated by data quality issues and inconsistent data entry leading to difficulties interpreting findings.


Assuntos
Imunização , Vacinação , Criança , Eletrônica , Humanos , Sistema de Registros , Tanzânia/epidemiologia
5.
PLoS Negl Trop Dis ; 15(7): e0009609, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310598

RESUMO

BACKGROUND: Guinea worm (Dracunculus medinensis) was detected in Chad in 2010 after a supposed ten-year absence, posing a challenge to the global eradication effort. Initiation of a village-based surveillance system in 2012 revealed a substantial number of dogs infected with Guinea worm, raising questions about paratenic hosts and cross-species transmission. METHODOLOGY/PRINCIPAL FINDINGS: We coupled genomic and surveillance case data from 2012-2018 to investigate the modes of transmission between dog and human hosts and the geographic connectivity of worms. Eighty-six variants across four genes in the mitochondrial genome identified 41 genetically distinct worm genotypes. Spatiotemporal modeling revealed worms with the same genotype ('genetically identical') were within a median range of 18.6 kilometers of each other, but largely within approximately 50 kilometers. Genetically identical worms varied in their degree of spatial clustering, suggesting there may be different factors that favor or constrain transmission. Each worm was surrounded by five to ten genetically distinct worms within a 50 kilometer radius. As expected, we observed a change in the genetic similarity distribution between pairs of worms using variants across the complete mitochondrial genome in an independent population. CONCLUSIONS/SIGNIFICANCE: In the largest study linking genetic and surveillance data to date of Guinea worm cases in Chad, we show genetic identity and modeling can facilitate the understanding of local transmission. The co-occurrence of genetically non-identical worms in quantitatively identified transmission ranges highlights the necessity for genomic tools to link cases. The improved discrimination between pairs of worms from variants identified across the complete mitochondrial genome suggests that expanding the number of genomic markers could link cases at a finer scale. These results suggest that scaling up genomic surveillance for Guinea worm may provide additional value for programmatic decision-making critical for monitoring cases and intervention efficacy to achieve elimination.


Assuntos
Dracunculíase/epidemiologia , Dracunculus/genética , Vigilância da População/métodos , Animais , Chade/epidemiologia , DNA de Helmintos/genética , Marcadores Genéticos , Genoma Helmíntico , Genoma Mitocondrial , Humanos
6.
Gates Open Res ; 5: 94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35299831

RESUMO

Background: Circulating vaccine derived poliovirus (cVDPV) outbreaks remain a threat to polio eradication. To reduce cases of polio from cVDPV of serotype 2, the serotype 2 component of the vaccine has been removed from the global vaccine supply, but outbreaks of cVDPV2 have continued. The objective of this work is to understand the factors associated with later detection in order to improve detection of these unwanted events. Methods: The number of nucleotide differences between each cVDPV outbreak and the oral polio vaccine (OPV) strain was used to approximate the time from emergence to detection. Only independent emergences were included in the analysis. Variables such as serotype, surveillance quality, and World Health Organization (WHO) region were tested in a negative binomial regression model to ascertain whether these variables were associated with higher nucleotide differences upon detection. Results: In total, 74 outbreaks were analysed from 24 countries between 2004-2019. For serotype 1 (n=10), the median time from seeding until outbreak detection was 572 (95% uncertainty interval (UI) 279-2016), for serotype 2 (n=59), 276 (95% UI 172-765) days, and for serotype 3 (n=5), 472 (95% UI 392-603) days. Significant improvement in the time to detection was found with increasing surveillance of non-polio acute flaccid paralysis (AFP) and adequate stool collection. Conclusions: cVDPVs remain a risk; all WHO regions have reported at least one VDPV outbreak since the first outbreak in 2000 and outbreak response campaigns using monovalent OPV type 2 risk seeding future outbreaks. Maintaining surveillance for poliomyelitis after local elimination is essential to quickly respond to both emergence of VDPVs and potential importations as low-quality AFP surveillance causes outbreaks to continue undetected. Considerable variation in the time between emergence and detection of VDPVs were apparent, and other than surveillance quality and inclusion of environmental surveillance, the reasons for this remain unclear.

7.
J Infect Dis ; 221(4): 561-565, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31565733

RESUMO

Despite increased efforts and spending toward polio eradication, it has yet to be eliminated worldwide. We aimed to project economic costs of polio eradication compared to permanent control. We used historical Financial Resource Requirements from the Global Polio Eradication Initiative, as well as vaccination and population data from publicly available sources, to project costs for routine immunization, immunization campaigns, surveillance and laboratory resources, technical assistance, social mobilization, treatment, and overhead. We found that cumulative spending for a control strategy would exceed that for an eradication strategy in 2032 (range, 2027-2051). Eradication of polio would likely be cost-saving compared to permanent control.


Assuntos
Erradicação de Doenças/economia , Programas de Imunização/economia , Controle de Infecções/economia , Poliomielite/prevenção & controle , Poliovirus/imunologia , Vacinação/economia , Erradicação de Doenças/métodos , Saúde Global , Humanos , Poliomielite/transmissão , Poliomielite/virologia , Vacina Antipólio de Vírus Inativado/economia , Vacina Antipólio Oral/economia
8.
PLoS One ; 13(12): e0208336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30592720

RESUMO

BACKGROUND: The polio environmental surveillance (ES) system has been an incredible tool for advancing polio eradication efforts because of its ability to highlight the spatial and temporal extent of poliovirus circulation. While ES often outperforms, or is more sensitive than AFP surveillance, the sensitivity of the ES system has not been well characterized. Fundamental uncertainty of ES site sensitivity makes it difficult to interpret results from ES, particularly negative results. METHODS AND FINDINGS: To study ES sensitivity, we used data from Afghanistan and Pakistan to examine the probability that each ES site detected the Sabin 1, 2, or 3 components of the oral polio vaccine (OPV) as a function of virus prevalence within the same district (estimated from AFP data). Accounting for virus prevalence is essential for estimating site sensitivity because Sabin detection rates should vary with prevalence-high immediately after supplemental immunization activities (SIAs), but low in subsequent months. We found that most ES sites in Pakistan and Afghanistan are highly sensitive for detecting poliovirus relative to AFP surveillance in the same districts. For example, even when Sabin poliovirus is at low prevalence of ~0.5-3% in AFP surveillance, most ES sites have ~34-50% probability of detecting Sabin. However, there was considerable variation in ES site sensitivity and we flagged several sites for re-evaluation based on low sensitivity rankings and low wild polio virus detection rates. In these areas, adding new sites or modifying collection methods in current sites could improve sensitivity of environmental surveillance. CONCLUSIONS: Relating ES detections to virus prevalence significantly improved our ability to evaluate site sensitivity compared to evaluations based solely on ES detection rates. To extend our approach to new sites and regions, we provide a preliminary framework for relating ES and AFP detection rates, and descriptions of how detection rates might relate to SIAs and natural seasonality.


Assuntos
Poliomielite/prevenção & controle , Afeganistão , Monitoramento Ambiental/métodos , Humanos , Modelos Teóricos , Paquistão , Vacina Antipólio Oral/uso terapêutico , Vigilância da População/métodos
9.
BMC Med ; 15(1): 175, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28974220

RESUMO

BACKGROUND: Wild type 2 poliovirus was last observed in 1999. The Sabin-strain oral polio vaccine type 2 (OPV2) was critical to eradication, but it is known to revert to a neurovirulent phenotype, causing vaccine-associated paralytic poliomyelitis. OPV2 is also transmissible and can establish circulating lineages, called circulating vaccine-derived polioviruses (cVDPVs), which can also cause paralytic outbreaks. Thus, in April 2016, OPV2 was removed from immunization activities worldwide. Interrupting transmission of cVDPV2 lineages that survive cessation will require OPV2 in outbreak response, which risks seeding new cVDPVs. This potential cascade of outbreak responses seeding VDPVs, necessitating further outbreak responses, presents a critical risk to the OPV2 cessation effort. METHODS: The EMOD individual-based disease transmission model was used to investigate OPV2 use in outbreak response post-cessation in West African populations. A hypothetical outbreak response in northwest Nigeria is modeled, and a cVDPV2 lineage is considered established if the Sabin strain escapes the response region and continues circulating 9 months post-response. The probability of this event was investigated in a variety of possible scenarios. RESULTS: Under a broad range of scenarios, the probability that widespread OPV2 use in outbreak response (~2 million doses) establishes new cVDPV2 lineages in this model may exceed 50% as soon as 18 months or as late as 4 years post-cessation. CONCLUSIONS: The risk of a cycle in which outbreak responses seed new cVDPV2 lineages suggests that OPV2 use should be managed carefully as time from cessation increases. It is unclear whether this risk can be mitigated in the long term, as mucosal immunity against type 2 poliovirus declines globally. Therefore, current programmatic strategies should aim to minimize the possibility that continued OPV2 use will be necessary in future years: conducting rapid and aggressive outbreak responses where cVDPV2 lineages are discovered, maintaining high-quality surveillance in all high-risk settings, strengthening the use of the inactivated polio vaccine as a booster in the OPV2-exposed and in routine immunization, and gaining access to currently inaccessible areas of the world to conduct surveillance.


Assuntos
Surtos de Doenças/prevenção & controle , Poliomielite/prevenção & controle , Vacina Antipólio Oral/uso terapêutico , Poliovirus/efeitos dos fármacos , Humanos , Poliomielite/epidemiologia , Vacina Antipólio Oral/administração & dosagem
10.
BMC Med ; 15(1): 180, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29017491

RESUMO

BACKGROUND: Pakistan is one of only three countries where poliovirus circulation remains endemic. For the Pakistan Polio Eradication Program, identifying high risk districts is essential to target interventions and allocate limited resources. METHODS: Using a hierarchical Bayesian framework we developed a spatial Poisson hurdle model to jointly model the probability of one or more paralytic polio cases, and the number of cases that would be detected in the event of an outbreak. Rates of underimmunization, routine immunization, and population immunity, as well as seasonality and a history of cases were used to project future risk of cases. RESULTS: The expected number of cases in each district in a 6-month period was predicted using indicators from the previous 6-months and the estimated coefficients from the model. The model achieves an average of 90% predictive accuracy as measured by area under the receiver operating characteristic (ROC) curve, for the past 3 years of cases. CONCLUSIONS: The risk of poliovirus has decreased dramatically in many of the key reservoir areas in Pakistan. The results of this model have been used to prioritize sub-national areas in Pakistan to receive additional immunization activities, additional monitoring, or other special interventions.


Assuntos
Erradicação de Doenças , Modelos Biológicos , Modelos Estatísticos , Poliomielite/prevenção & controle , Poliovirus , Teorema de Bayes , Pré-Escolar , Surtos de Doenças/prevenção & controle , Humanos , Programas de Imunização , Paquistão/epidemiologia , Poliomielite/epidemiologia , Vacinas contra Poliovirus/administração & dosagem , Probabilidade , Curva ROC , Risco
11.
Vaccine ; 35(42): 5674-5681, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28890193

RESUMO

The globally synchronized removal of the attenuated Sabin type 2 strain from the oral polio vaccine (OPV) in April 2016 marked a major change in polio vaccination policy. This change will provide a significant reduction in the burden of vaccine-associated paralytic polio (VAPP), but may increase the risk of circulating vaccine-derived poliovirus (cVDPV2) outbreaks during the transition period. This risk can be monitored by tracking the disappearance of Sabin-like type 2 (SL2) using data from the polio surveillance system. We studied SL2 prevalence in 17 countries in Africa and Asia, from 2010 to 2016 using acute flaccid paralysis surveillance data. We modeled the peak and decay of SL2 prevalence following mass vaccination events using a beta-binomial model for the detection rate, and a Ricker function for the temporal dependence. We found type 2 circulated the longest of all serotypes after a vaccination campaign, but that SL2 prevalence returned to baseline levels in approximately 50days. Post-cessation model predictions identified 19 anomalous SL2 detections outside of model predictions in Afghanistan, India, Nigeria, Pakistan, and western Africa. Our models established benchmarks for the duration of SL2 detection after OPV2 cessation. As predicted, SL2 detection rates have plummeted, except in Nigeria where OPV2 use continued for some time in response to recent cVDPV2 detections. However, the anomalous SL2 detections suggest specific areas that merit enhanced monitoring for signs of cVDPV2 outbreaks.


Assuntos
Poliomielite/imunologia , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio Oral/imunologia , Poliovirus/imunologia , Erradicação de Doenças/métodos , Surtos de Doenças/prevenção & controle , Saúde Global , Humanos , Vacinação em Massa/métodos , Gestão de Riscos/métodos , Sorogrupo , Vacinação/métodos
12.
BMC Infect Dis ; 17(1): 367, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28549485

RESUMO

BACKGROUND: The international spread of wild poliomyelitis outbreaks continues to threaten eradication of poliomyelitis and in 2014 a public health emergency of international concern was declared. Here we describe a risk scoring system that has been used to assess country-level risks of wild poliomyelitis outbreaks, to inform prioritisation of mass vaccination planning, and describe the change in risk from 2014 to 2016. The methods were also used to assess the risk of emergence of vaccine-derived poliomyelitis outbreaks. METHODS: Potential explanatory variables were tested against the reported outbreaks of wild poliomyelitis since 2003 using multivariable regression analysis. The regression analysis was translated to a risk score and used to classify countries as Low, Medium, Medium High and High risk, based on the predictive ability of the score. RESULTS: Indicators of population immunity, population displacement and diarrhoeal disease were associated with an increased risk of both wild and vaccine-derived outbreaks. High migration from countries with wild cases was associated with wild outbreaks. High birth numbers were associated with an increased risk of vaccine-derived outbreaks. CONCLUSIONS: Use of the scoring system is a transparent and rapid approach to assess country risk of wild and vaccine-derived poliomyelitis outbreaks. Since 2008 there has been a steep reduction in the number of wild poliomyelitis outbreaks and the reduction in countries classified as High and Medium High risk has reflected this. The risk of vaccine-derived poliomyelitis outbreaks has varied geographically. These findings highlight that many countries remain susceptible to poliomyelitis outbreaks and maintenance or improvement in routine immunisation is vital.


Assuntos
Poliomielite/epidemiologia , Vacinas contra Poliovirus/efeitos adversos , Medição de Risco/métodos , África/epidemiologia , Ásia/epidemiologia , Surtos de Doenças , Humanos , Vacinação em Massa , Poliomielite/virologia , Poliovirus/patogenicidade , Saúde Pública , Análise Espaço-Temporal
13.
Vaccine ; 34(48): 5946-5952, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27771181

RESUMO

The Global Polio Eradication Initiative is closer than ever to achieving a polio-free world. Immunization activities must still be carried out in non-endemic countries to maintain population immunity at levels which will stop poliovirus from spreading if it is re-introduced from still-infected areas. In areas where there is no active transmission of poliovirus, programs must rely on surrogate indicators of population immunity to determine the appropriate immunization activities, typically caregiver-reported vaccination history obtained from non-polio acute flaccid paralysis patients identified through polio surveillance. We used regression models to examine the relationship between polio vaccination campaigns and caregiver-reported polio vaccination history. We find that in many countries, vaccination campaigns have a surprisingly weak impact on these commonly used indicators. We conclude that alternative criteria and data, such as routine immunization indicators from vaccination records or household surveys, should be considered for planning polio vaccination campaigns, and that validation of such surrogate indicators is necessary if they are to be used as the basis for program planning and risk assessment. We recommend that the GPEI and similar organizations consider or continue devoting additional resources to rigorously study population immunity and campaign effectiveness in at-risk countries.


Assuntos
Programas de Imunização , Modelos Estatísticos , Poliomielite/imunologia , Poliomielite/prevenção & controle , Vacina Antipólio Oral , Erradicação de Doenças/métodos , Erradicação de Doenças/organização & administração , Saúde Global/economia , Saúde Global/estatística & dados numéricos , Recursos em Saúde , Humanos , Vacina Antipólio Oral/imunologia , Vigilância da População , Medição de Risco , Vacinação , Organização Mundial da Saúde
14.
PLoS Pathog ; 12(7): e1005728, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27384947

RESUMO

Reversion and spread of vaccine-derived poliovirus (VDPV) to cause outbreaks of poliomyelitis is a rare outcome resulting from immunisation with the live-attenuated oral poliovirus vaccines (OPVs). Global withdrawal of all three OPV serotypes is therefore a key objective of the polio endgame strategic plan, starting with serotype 2 (OPV2) in April 2016. Supplementary immunisation activities (SIAs) with trivalent OPV (tOPV) in advance of this date could mitigate the risks of OPV2 withdrawal by increasing serotype-2 immunity, but may also create new serotype-2 VDPV (VDPV2). Here, we examine the risk factors for VDPV2 emergence and implications for the strategy of tOPV SIAs prior to OPV2 withdrawal. We first developed mathematical models of VDPV2 emergence and spread. We found that in settings with low routine immunisation coverage, the implementation of a single SIA increases the risk of VDPV2 emergence. If routine coverage is 20%, at least 3 SIAs are needed to bring that risk close to zero, and if SIA coverage is low or there are persistently "missed" groups, the risk remains high despite the implementation of multiple SIAs. We then analysed data from Nigeria on the 29 VDPV2 emergences that occurred during 2004-2014. Districts reporting the first case of poliomyelitis associated with a VDPV2 emergence were compared to districts with no VDPV2 emergence in the same 6-month period using conditional logistic regression. In agreement with the model results, the odds of VDPV2 emergence decreased with higher routine immunisation coverage (odds ratio 0.67 for a 10% absolute increase in coverage [95% confidence interval 0.55-0.82]). We also found that the probability of a VDPV2 emergence resulting in poliomyelitis in >1 child was significantly higher in districts with low serotype-2 population immunity. Our results support a strategy of focused tOPV SIAs before OPV2 withdrawal in areas at risk of VDPV2 emergence and in sufficient number to raise population immunity above the threshold permitting VDPV2 circulation. A failure to implement this risk-based approach could mean these SIAs actually increase the risk of VDPV2 emergence and spread.


Assuntos
Modelos Teóricos , Poliomielite/prevenção & controle , Vacina Antipólio Oral/efeitos adversos , Humanos , Nigéria/epidemiologia , Poliomielite/epidemiologia , Poliomielite/transmissão , Poliovirus/imunologia , Fatores de Risco , Vacinas Atenuadas/efeitos adversos
15.
BMC Med ; 14: 60, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27029535

RESUMO

BACKGROUND: The world is closer than ever to a polio-free Africa. In this end-stage, it is important to ensure high levels of population immunity to prevent polio outbreaks. Here, we introduce a new method of assessing vaccination campaign effectiveness and estimating immunity at the district-level. We demonstrate how this approach can be used to plan the vaccination campaigns prospectively to better manage population immunity in Northern Nigeria. METHODS: Using Nigerian acute flaccid paralysis surveillance data from 2004-2014, we developed a Bayesian hierarchical model of campaign effectiveness and compared it to lot-quality assurance sampling data. We then used reconstructed sero-specific population immunity based on campaign history and compared district estimates of immunity to the occurrence of confirmed poliovirus cases. RESULTS: Estimated campaign effectiveness has improved across northern Nigeria since 2004, with Kano state experiencing an increase of 40 % (95 % CI, 26-54 %) in effectiveness from 2013 to 2014. Immunity to type 1 poliovirus has increased steadily. On the other hand, type 2 immunity was low and variable until the recent use of trivalent oral polio vaccine. We find that immunity estimates are related to the occurrence of both wild and vaccine-derived poliovirus cases and that campaign effectiveness correlates with direct measurements using lot-quality assurance sampling. Future campaign schedules highlight the trade-offs involved with using different vaccine types. CONCLUSIONS: The model in this study provides a novel method for assessing vaccination campaign performance and epidemiologically-relevant estimates of population immunity. Small-area estimates of campaign effectiveness can then be used to evaluate prospective campaign plans. This modeling approach could be applied to other countries as well as other vaccine preventable diseases.


Assuntos
Teorema de Bayes , Poliomielite/imunologia , Poliomielite/prevenção & controle , Vacina Antipólio Oral , Vacinação , África , Humanos , Nigéria/epidemiologia , Poliomielite/epidemiologia , Estudos Prospectivos
16.
J Infect Dis ; 213(1): 90-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26142435

RESUMO

BACKGROUND: Plasmodium falciparum gametocytes are essential for malaria transmission. Malaria control measures that aim at reducing transmission require an accurate characterization of the human infectious reservoir. METHODS: We longitudinally determined human infectiousness to mosquitoes and P. falciparum carriage by an ultrasensitive RNA-based diagnostics in 130 randomly selected inhabitants of an endemic area. RESULTS: At least 1 mosquito was infected by 32.6% (100 of 307) of the blood samples; in total, 7.6% of mosquitoes (916 of 12 079) were infected. The proportion of infectious individuals and infected mosquitoes were negatively associated with age and positively with asexual parasites (P < .001). Human infectiousness was higher at the start of the wet season and subsequently declined at the peak of the wet season (adjusted odds ratio, 0.52; P = .06) and in the dry season (0.23; P < .001). Overall, microscopy-negative individuals were responsible for 28.7% of infectious individuals (25 of 87) and 17.0% of mosquito infections (145 of 855). CONCLUSIONS: Our study reveals that the infectious reservoir peaks at the start of the wet season, with prominent roles for infections in children and submicroscopic infections. These findings have important consequences for strategies and the timing of interventions, which need to include submicroscopic infections and be implemented in the dry season.


Assuntos
Anopheles , Portador Sadio , Insetos Vetores , Malária Falciparum , Adolescente , Adulto , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Burkina Faso/epidemiologia , Portador Sadio/epidemiologia , Portador Sadio/parasitologia , Portador Sadio/transmissão , Criança , Reservatórios de Doenças/parasitologia , Comportamento Alimentar , Feminino , Humanos , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Estudos Longitudinais , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Plasmodium falciparum , Adulto Jovem
18.
BMC Med ; 12: 92, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24894345

RESUMO

BACKGROUND: One of the challenges facing the Global Polio Eradication Initiative is efficiently directing limited resources, such as specially trained personnel, community outreach activities, and satellite vaccinator tracking, to the most at-risk areas to maximize the impact of interventions. A validated predictive model of wild poliovirus circulation would greatly inform prioritization efforts by accurately forecasting areas at greatest risk, thus enabling the greatest effect of program interventions. METHODS: Using Nigerian acute flaccid paralysis surveillance data from 2004-2013, we developed a spatial hierarchical Poisson hurdle model fitted within a Bayesian framework to study historical polio caseload patterns and forecast future circulation of type 1 and 3 wild poliovirus within districts in Nigeria. A Bayesian temporal smoothing model was applied to address data sparsity underlying estimates of covariates at the district level. RESULTS: We find that calculated vaccine-derived population immunity is significantly negatively associated with the probability and number of wild poliovirus case(s) within a district. Recent case information is significantly positively associated with probability of a case, but not the number of cases. We used lagged indicators and coefficients from the fitted models to forecast reported cases in the subsequent six-month periods. Over the past three years, the average predictive ability is 86 ± 2% and 85 ± 4% for wild poliovirus type 1 and 3, respectively. Interestingly, the predictive accuracy of historical transmission patterns alone is equivalent (86 ± 2% and 84 ± 4% for type 1 and 3, respectively). We calculate uncertainty in risk ranking to inform assessments of changes in rank between time periods. CONCLUSIONS: The model developed in this study successfully predicts districts at risk for future wild poliovirus cases in Nigeria. The highest predicted district risk was 12.8 WPV1 cases in 2006, while the lowest district risk was 0.001 WPV1 cases in 2013. Model results have been used to direct the allocation of many different interventions, including political and religious advocacy visits. This modeling approach could be applied to other vaccine preventable diseases for use in other control and elimination programs.


Assuntos
Erradicação de Doenças/estatística & dados numéricos , Recursos em Saúde/organização & administração , Modelos Estatísticos , Poliomielite/prevenção & controle , Poliomielite/virologia , Poliovirus , Teorema de Bayes , Feminino , Geografia Médica , Humanos , Nigéria/epidemiologia , Distribuição de Poisson , Poliomielite/epidemiologia , Poliomielite/imunologia , Poliomielite/transmissão , Risco , Fatores de Tempo , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...